A composition theorem for bisimulation functions

نویسنده

  • Antoine Girard
چکیده

The standard engineering approach to modelling of complex systems is highly compositional. In order to be able to understand (or to control) the behavior of a complex dynamical systems, it is often desirable, if not necessary, to view this system as an interconnection of smaller interacting subsystems, each of these subsystems having its own functionalities. In this paper, we propose a compositional approach to the computation of bisimulation functions for dynamical systems. Bisimulation functions are quantitative generalizations of the classical bisimulation relations. They have been shown useful for simulation-based verification or for the computation of approximate symbolic abstractions of dynamical systems. In this technical note, we present a constructive result for the composition of bisimulation functions. For a complex dynamical system consisting of several interconnected subsystems, it allows us to compute a bisimulation function from the knowledge of a bisimulation function for each of the subsystem. ∗Laboratoire Jean Kuntzmann,Université Joseph Fourier, B.P. 53, 38041 Grenoble Cedex 9, [email protected]. This work has been supported by the Agence Nationale de la Recherche (VAL-AMS project ANR-06-SETIN-018)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deriving Cryptographically Sound Implementations Using Composition and Formally Verified Bisimulation

L.-H. Eriksson and P.A. Lindsay (Eds.): FME 2002, LCNS 2391, pages 310 329, July 2002. c © Springer-Verlag Berlin Heidelberg 2002. Abstract. We consider abstract specifications of cryptographic protocols which are both suitable for formal verification and maintain a sound cryptographic semantics. In this paper, we present the first abstract specification for ordered secure message transmission ...

متن کامل

Titchmarsh theorem for Jacobi Dini-Lipshitz functions

Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...

متن کامل

Bisimulation for BL-general fuzzy automata

In this note, we define bisimulation for BL-general fuzzy automata and show that if there is a bisimulation between two BL-general fuzzy automata, then they have the same behavior.For a given BL-general fuzzy automata, we obtain the greatest bisimulation for the BL-general fuzzy automata. Thereafter, if we use the greatest bisimulation, then we obtain a quotient BL-general fuzzy automata and th...

متن کامل

Generalized Coinduction

We introduce the λ-coiteration schema for a distributive law λ of a functor T over a functor F. Parameterised by T and λ it generalizes the basic coiteration schema uniquely characterising functions into a final F-coalgebra. Furthermore, the same parameters are used to generalize the categorical notion of a bisimulation to that of a λ-bisimulation, still giving rise to a proof technique for bis...

متن کامل

On the Expressive Power of CTL

We show that the expressive power of the branching time logic CTL coincides with that of the class of bisimulation invariant properties expressible in so-called monadic path logic: monadic second order logic in which set quantification is restricted to paths. In order to prove this result, we first prove a new Composition Theorem for trees. This approach is adapted from the approach of Hafer an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1304.5153  شماره 

صفحات  -

تاریخ انتشار 2013